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| guess | don't need to tell NASA we live in the
“Data Era” right? :)



We all understand data has lots of value ...



... but how do we extract useful information and
knowledge out of data?



....and how do we communicate this information
effectively, truthfully, and persuasively to
others?



Traditional scientific process:

1) Formulate a question first.
2) Collect necessary data.
3) Run experiment to answer the question.



... when data largely available/easy to produce:

1) We got data! What shall we do with it?
2) Let's look into it.
3) Mmm ... How?



JOHN W. TUKEY*

We often forget how science and engineering function. Ideas come
from previous exploration more often than from lightning strokes.
Important questions can demand the most careful planning for
confirmatory analysis. Broad general inquiries are also important.
Finding the question is often more important than finding the

answer. Exploratory data analysis is an attitude, a flexibility, and
a reliance on display, NOT a bundle of techniques, and should
be so taught. Confirmatory data analysis, by contrast, is easier
to teach and easier to computerize. We need to teach both; to think
about science and engineering more broadly; to be prepared to
randomize and avoid multiplicity.



Visual Analytics: “The science of analytical
reasoning facilitated by interactive visual interfaces”
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Examples from our lab ...



a. Visual Analytics for Drug Discovery.



Assay Plates

Plate Reader

Data

e . — — — — — — — = — — = —




Structure-Activity Relationship (SAR) Analysis
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Mining algorithms necessary to extract meaningful
molecular fragments.
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Bertini, Enrico, et al. "HiTSEE: a visualization tool for hit selection and analysis in high-throughput
screening experiments." Biological Data Visualization (BioVis), 2011 IEEE Symposium on. IEEE, 2011.



b. Visual Comparison of Machine Learning
Models for Healthcare Analytics.



Predictive
Modeling Pipeline

Running Example:
Predicting Diabetes
Diagnoses in a
Patient Population

Cohort Feature
Construction Construction
Assembles a
Constructs a feature vector
oohqrt of 15,038 using 4 types of
patients. 50% clinical events:
(7,519) have a Diagnoses, Labs,
diabetes diagnosis Medications, and
Procedures
—_— —

Splits the cohort
into 10 random
folds for Cross

Validation

Executes 4 Feature
Selection
algorithms on each
fold:
Information Gain,
Fisher Score,
Odds Ratio, and
Relative Risk

Evaluates each
model of selected
features with 4
classifiers:
Logistic Regression,
Decision Tree, Naive
Bayesian, and
K Nearest Neightor

(Work in collaboration with Adam Perer @ IBM Watson)



Parallel computation of multiple models

Feature Selection Classification Folds (Samples)

(Information Gain, Fisher Score, X (Logistic Regression, Decision X 10-folds validation
Odds Ratio, Relative Risk, ...) Trees, Naive Bayes, kNN, ...)
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Each dot is a feature (e.g., lab test)

Each quadrant represents a feature
selection algorithm

Each segment represents a fold (sample)

Length of the bar represents the ranking
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c. Visual Reconciliation of Alternate Similarity
Spaces in Climate Modeling.



Create groups

Model Structure Model Output
criteria Reconcile structure with output
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Why use visualization”?
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Design Study Methodology: Reflections from the Trenches and the Stacks
Michael Sedimair, Miriah Meyer, and Tamara Munzner
IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis), 18(12): 2431-2440, 2012.


https://www.cs.ubc.ca/~msedl
http://www.cs.utah.edu/~miriah/
https://www.cs.ubc.ca/~tmm
https://www.cs.ubc.ca/~msedl

Visualization can make complex
problems trivial.



Let’s Play a Game! The Game of “15”

RULES

1) There are 2 players

2) Each player takes a digit in turn

3) Once a digit is taken, it cannot be used by any of the players again

4) The first player to get three digits that sum to 15 wins

{1,2,3,4,5,6, 7,8, 9}

Example taken from Prof. Pat
Hanrahan’s EuroVis’09 keynote talk.



http://www.graphics.stanford.edu/~hanrahan/talks/thought.pdf

Tic-Tac-Toe: Herbert Simon’s “Problem Isomorph”




Visualization can be faster than your
eyes can move!



Preattentive Processing

Preattentive features can be detected faster
than eye movement (200 msec).






http://www.youtube.com/watch?v=wnvoZxe95bo

Visualization can reveal information
that summary statistics may hide.



Anscombe’s Quartet

@

The risk of relying exclusively
on numbers and statistics.

Property
Mean of x in each case

Variance of x in each case
Mean of y in each case

Variance of y in each case

Value
9 (exact)
11 (exact)
7.50 (to 2 decimal places)
4,122 or 4.127 (to 3 decimal places)

Correlation between x and y in each case 0.816 (to 3 decimal places)

Linear regression line in each case

y = 3.00 + 0.5002 (to 2 and 3 decimal places, respectively)



But ... only if used properly!



A WORLD OF DRUGS

GLOBAL SPENDING ON MEDICINE IS EXPECTED

TO SOAR IM THE COMING DECADE, WITH MOST

OF THE GROWTH COMING IN THE EMERGING 2016
MARKETS THAT WALGREEM IS TARGETING FOR $1.175-1,205 bil
EXPANSION. =

2m
$956 bil

20086
$658 bil
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Example taken from: Junk Charts: Expanding circles of error
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http://junkcharts.typepad.com/junk_charts/2012/10/expanding-circles-of-error.html

Some are plain wrong!
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Graphical Perception
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Cleveland, William S., and Robert McGill. "Graphical perception: Theory,
experimentation, and application to the development of graphical
methods."Journal of the American Statistical Association 79.387 (1984):
531-554.



Evaluation of Color Maps in Climate Science.
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100. Luminance plot for Blue scale Luminance plot for Kindimann 100. Luminance plot for Rainbow
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K 1 - Magnitude Estimation
K 2 - Similarity Estimation

K 3 - Area ldentification



MAGNITUDE ESTIMATION
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Correctness (%)

Color scales

SIMILARITY ESTIMATION
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SUBJECTIVE PERCEPTION
OF PERFORMANCE

HAERF

I I 1 1 1
Accuracy Confidence Ease Familiarity Preference

Color scale . Blue scale . Kindimann . Rainbow



Selected Challenges

Automated and Interactive Methods.
High-Dimensional Data Spaces.

Evidence-Based Guidelines for Vis Design.



Sifting through a
million plots.
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Paper: How Deceptive Are Deceptive Visualizations?
by ENRICO on FEBRUARY 25, 2015
in RESEARCH
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We all know by now that visualization, thanks to its amazing communication powers, can be used
to communicate effectively and persuasively massages that stick into people’s mind. This same
power, however, can also be used to mislead and misinform people very effectively! When
techniques like non-zero baselines, scaling by area (quadratic change to represent linear

changes), bad color maps, etc., are used, it is very easy to communicate the wrong message to
your readers (being that done on purpose or for lack of better knowledge). But, how easy is it?

How easy is it to deceive people with visualization?

http://fellinlovewithdata.com
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FILWD is edited by
Enrico Bertini,
Assistant Professor
at the NYU
Polytechnic School
of Engineering. I do
research, teach, and
write about how to
make sense of data.

I am also, together
with my buddy
Moritz Stefaner the
host of Data Stories,
the data
visualization
podcast.

TwITTER

@filwd

RSS


http://fellinlovewithdata.com
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A podcast on data visualzation with Enrico Bertini and Moritz Stefaner

-

Data Stories tv#00 — The NYT 3D Yield
Curve Chart w/ Gregor Aisch

[ MP3 Audio [0 B)

% | [Downlozd | [ Show URL

A 30 View of 8 Chart That Predess
The Lconomic Futarw: The Yid Curve

Hi Folks, great news ... we are experimenting with a new format for Data Stories that
includes ... that includes ... thatincludes ... guess whaaaaaat? Video!

After having heard many many times that it's hard to imagine how a visualization
Llooks like when we are talking about it, we have decided to experiment with a new

format.

This is for now just a pilot to see how you guys react. so we would love to hear your
feedback about how you like it and how we can improve.

To be clear. we are not planning to substitute our regular podcast with this, we
are trying to build a parallel channel.

Here's the video!

ABOUT

DATA STORIES 's a bi-weekly
podcast on data visualization
with Enrico Bertini and Moritz
Stefaner.

ARCHIVE
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SEARCH

P search

SUBSCRIBE TO DATA
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@ Subscribe

Never miss an episode!

PODCAST CHANNELS

M4A

Podcast feed (m4al The data
stonies audio episodes, in
ma4a format.

MP3

Podcast feed (mp3) The data
stories audio epsiodes, in
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Subscribe in iTunes Subscribe
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Thanks! Questions?

enrico.bertini@nyu.edu
http://enrico.bertini.io

@filwd
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